Basic Elec. Engr. Lab ECS 204

Asst. Prof. Dr. Prapun Suksompong

 prapun@siit.tu.ac.th

- Operational amplifier
- Inverting amplifier
- Summing Amplifier
- Inverting Integrator

Op-Amp 741
 - OPerational AMPlifier

Placing op amps on the proto-board

- Plug in op amp chips so that they straddle the troughs on the proto board.
- In this way, each pin is connected to a different hole set.

Powering the op amp

- The op amp must be powered by voltage supplies.
- These supplies are often ignored
 in op amp circuit diagrams for the sake of simplicity.

Part A: Inverting Amplifier

$$
\mathrm{V}_{\mathrm{o}}=-\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{R}}} \mathrm{~V}_{\mathrm{i}} \text {. }
$$

Part A: Inverting Amplifier

Part b: Summing Amplifier

- Note that you will need 4 DC Voltage Sources in this part.

Part C: Inverting Integrator

As a Ramp Generator...

Inverting Integrator (2)

- An input with nonzero mean (DC offset) can saturate the op amp.

Inverting Integrator: AC SS Analysis

$$
\begin{aligned}
V_{o} & =-\left(\frac{Z_{C}}{R}\right) V_{i} \\
& =-\left(\frac{V_{i}}{R}\right) \times \frac{1}{j \omega C}
\end{aligned}
$$

- The gain at $f=0$ is unbounded.
- Act like an active low pass filter, passing low frequency signals while attenuating the high frequencies.

Inverting Integrator w/ Shunt Resistor

- In practical circuit, a large resistor R_{p} is usually shunted across the capacitor

$$
\begin{aligned}
V_{o} & =-\left(\frac{Z_{C} / / R_{p}}{R}\right) V_{i} \\
& =-\left(\frac{V_{i}}{R}\right) \times \frac{R_{p}}{j \omega R_{p} C+1}
\end{aligned}
$$

- Observe that at $f=0$, the gain is finite.

Inverting Integrator w/ Shunt Resistor

- Output is not triangular.
- "Virtually triangular" if $R_{p} C \gg \frac{T}{2}$

$\Delta h \frac{R p}{R} \frac{1-r}{1+r} \downarrow$
$r=\exp \left(-\frac{1}{2 f R_{p} C}\right)$
$\tau=R_{p} C$$v_{o}(t)$

