Basic Elec. Engr. Lab **ECS 204**

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

- Operational amplifier
- Lab 7 & 8 Inverting amplifier
 - Summing Amplifier
 - **Inverting Integrator**

Placing op amps on the proto-board

- Plug in op amp chips so that they straddle the troughs on the proto board.
- In this way, each pin is connected to a different hole set.

Powering the op amp

- The op amp must be powered by voltage supplies.
- These supplies are often ignored in op amp circuit diagrams for the sake of simplicity.

Part A: Inverting Amplifier

Part A: Inverting Amplifier

Part b: Summing Amplifier

• Note that you will **need 4 DC Voltage Sources** in this part.

Inverting Integrator (2)

 An input with nonzero mean (DC offset) can saturate the op amp.

Inverting Integrator: AC SS Analysis

- The gain at f = 0 is unbounded.
- Act like an **active low pass filter**, passing low frequency signals while attenuating the high frequencies.

(w/ DC Gain Control)

Inverting Integrator w/ Shunt Resistor

• In practical circuit, a large resistor $R_{\rm p}$ is usually shunted across the capacitor

 $V_o = -\left(\frac{Z_C / R_p}{R}\right) V_i$ $= -\left(\frac{V_i}{R}\right) \times \frac{R_p}{j\omega R_p C + 1}$

• Observe that at f = 0, the gain is finite.

Inverting Integrator w/ Shunt Resistor

